Weakly coupled parabolic systems with unbounded coefficients
نویسندگان
چکیده
منابع مشابه
Nonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients
We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...
متن کاملL–regularity for Parabolic Operators with Unbounded Time–dependent Coefficients
We establish the maximal regularity for nonautonomous OrnsteinUhlenbeck operators in L-spaces with respect to a family of invariant measures, where p ∈ (1,+∞). This result follows from the maximal L-regularity for a class of elliptic operators with unbounded, time-dependent drift coefficients and potentials acting on L(R ) with Lebesgue measure.
متن کاملAsymptotic Behavior in Time Periodic Parabolic Problems with Unbounded Coefficients
We study asymptotic behavior in a class of non-autonomous second order parabolic equations with time periodic unbounded coefficients in R×R. Our results generalize and improve asymptotic behavior results for Markov semigroups having an invariant measure. We also study spectral properties of the realization of the parabolic operator u 7→ A(t)u − ut in suitable L spaces.
متن کاملMonotone Difference Schemes for Weakly Coupled Elliptic and Parabolic Systems
The present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is introduced and the definition of its monotonicity is given. This definition is closely associated with the prope...
متن کاملParabolic and Elliptic Systems with Vmo Coefficients
We consider second order parabolic and elliptic systems with leading coefficients having the property of vanishing mean oscillation (VMO) in the spatial variables. An Lq −Lp theory is established for systems both in divergence and non-divergence form. Higher order parabolic and elliptic systems are also discussed briefly.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hiroshima Mathematical Journal
سال: 1973
ISSN: 0018-2079
DOI: 10.32917/hmj/1206137437